Modular Formal Specification of Data and
Behaviour

Jaco van de Pol!, Jozef Hooman?, Edwin de Jong®

! Dept. of Computing Science, Eindhoven University of Technology
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
jaco@Qwin.tue.nl
2 Computing Science Institute, University of Nijmegen
P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
hooman@cs.kun.nl
3 Hollandse Signaalapparaten B.V.

P.O. Box 42, 7550 GD, Hengelo, The Netherlands
edejong@signaal.nl

Abstract. We propose a modular approach to the formal specifica-
tion of the requirements on embedded systems. In this approach, re-
quirements on data are specified as invariants on states. Requirements
on behaviour are specified assertionally by temporal logic formulae,
restricting the runs of the system. The proposed method is modular,
because components can be specified and analysed in isolation, and
the views of several components can be combined in an easy way. Re-
quirements can be combined by simply putting them in conjunction.
A mathematical framework supporting this approach is developed and
implemented in the theorem prover PVS. The method is illustrated by
formalising the requirements of a miniature embedded system. This
specification is then analysed using the theorem prover, revealing some
errors in the original specification.

Keywords: formal requirements specification, embedded systems, modularity,
data and behaviour, states and events, linear temporal logic, PVS.

1 Introduction

The requirements specification is the first formal document in the development
of a complex system. Errors in the specification propagate to all later phases
in the development, until they are detected. It is well-known that errors that
are made early and detected late, are relatively expensive to repair [16, p. 38].
Hence, the quality of a requirements specification is important. Good analysis
methods are helpful to improve this quality.

The requirements specification cannot be verified against some prior for-
mal document. Besides some well-formedness checks, it can only be validated
against informal user requirements. Various validation techniques have been

developed to assess the quality of specifications, like inspection, prototyping
and scenario generation.

Still formal methods are helpful in this early phase of system development,
cf. [16]. Parsing and type checking a specification reveal numerous errors.
The formal semantics of the specification language provides a mathemati-
cal model of the specified system, which can be analysed with mathematical
rigour. Properties of the specification, like consistency, can be verified formally
and validation is supported by proving formal challenges. Powerful theorem
provers are available to make this analysis tractable for large systems.

The contribution of this paper is a framework to specify requirements on
data and on behaviour of complex systems in a modular fashion. In order
to have tool support at this experimental stage, we use an existing general-
purpose theorem prover. We have experimented [14] with PVS (Prototype
Verification System) [12,13], which is based on typed higher-order classical
logic.

The basic framework. We distinguish between states and events. The state
represents the data in the system, that has been deduced about the current
state of affairs in the environment. Events occur instantaneously on the border
of the system. Events can be split into input and output events. An event
causes a state transition, which also takes place instantaneously. A run of the
system is an infinite sequence sg, €g, S1, €1, S2, . . ., where the s; are states and
the e; are events. A run represents one possible behaviour of the system. In
this approach, simultaneous events are modelled by all possible interleavings.

Such systems could be specified by transition systems. However, in order
to obtain more abstract specifications, we use assertions on states and on
runs. Assertions on states represent relationships between data items that
should be maintained invariantly. By allowing invariants, we don’t need to
specify how the constraints shall be maintained. Assertions on runs will specify
the behaviour of the system. In this paper we will restrict such assertions
to formulae of linear temporal logic, based on propositions on states, state
transitions and events.

Modularisation. To achieve readability and scalability, some structure has to
be imposed on large specifications. To this end, the specification of the system
is decomposed into a specification of components. These components must not
be understood as structural or physical parts of the system to be constructed;
this decomposition is deferred to the design phase. The components can be
understood as projections of the system, focusing on a number of state vari-
ables and a number of events. The requirements on a component are specified
in terms of its own state variables and events only.

Consider subcomponents C1 and C2 of some aggregate A. C1 and C2 are
specified completely independently and don’t even know about each other’s
existence. We don’t specify internal communication between C1 and C2. But,
because C1 and C2 are subcomponents of A, requirements on A may use their
variables and events, so coordination between C1 and C2 can be specified at
the level of A.

Problem statement. Our aim is to develop a formal framework for the re-
quirements specification of embedded systems. To capture the requirements,
the method should allow assertional specifications of data and behaviour. For
scalability, the method should be modular, by allowing that components are
specified locally, independent of the complete system. Coordination between
various components is specified separately.

A technical problem that has to be solved concerns the interpretation of
local assertions of a component on a global level. It should be possible to
put the requirements of different components in conjunction. We look for a
solution that is easily implementable in PVS.

The rest of this paper. Section 2 informally introduces a running example. The
implementation in PVS consists of a generic part (Section 3) and a system
specific part (Section 4). The generic part contains the definition of temporal
logic and its modular interpretation. In the specific part, we formalise the
requirements of the running example, using the generic framework. Section 5
reports on the analysis of a requirements specification. The results are sum-
marised in Section 6, in which also related and future work are mentioned.

2 Running Example

Embedded systems are equipped with various sensors and actuators. Mea-
surements from the environment are continuously obtained via the sensors
and compiled into an abstract picture that reflects the current state of the
environment. This picture is communicated to a team of operators. The sys-
tem supports the decision making process by tracking differences between the
perceived state and the required state, and by proposing and analysing correc-
tive actions, which can be executed via the system’s actuators. Applications
of these systems include traffic management systems, command and control
systems, and process control systems.

We now introduce a running example which can be seen as a miniature
embedded system. The system interacts with two different sensors, and with
an operator. For simplicity it is assumed that the sensors only report incre-
ment events, that are counted by the system. Apart from the value of these
two counters, there is a derived data item, z, which represents the difference
between these two values.

The system interactively diagnoses the interpreted information and com-
municates with the operator, via a warning mechanism. If this mechanism is
active, a warning shall be raised, whenever the value of z exceeds 10. The op-
erator can close a raised warning. When z is lower than or equal to 10 again,
the system may also withdraw the warning. Finally, the operator can toggle
the activity of the warning system.

Any decomposition of this small system is artificial, but to illustrate our
approach, we divide the system into a warning component and a database
component. The database contains two counters as subcomponents, that hold

System

active?: bool
toggle
warn db
Warning Database
z: nat
raise
withdraw
close
X y
Counter
vaue: nat
increment

Fig. 1. Hierarchic structuring of running example

the values of the corresponding sensors. Figure 1 gives an impression of the
structure thus obtained. Moreover, this figure assigns names to the sub-
components (like x and db), distributes typed state variables (e.g. z:nat,
active?:bool) over components, and also distributes the events (e.g. raise,
toggle) of the system over the components.

We now illustrate how the requirements can be specified by assertions that
are local to components. We stress that the real specification is the formal
specification in Section 4.

The warning component has no explicit state. Only the possible orders of
event occurrences have to be specified. The fact that two raise-events must
be interleaved by a withdraw or close event, is expressed as a temporal logic
formula:

O(raise = Q((withdraw V close) B raise),

where [0 is read as always, () as next and B as before. In words: Whenever
a raise occurs, the next raise should be preceded by either a withdraw or a
close.

In the counter component, it must be specified what the effect of the incre-
ment event is. This effect is a state relation that can be expressed as: value’ =
value + 1, meaning that the value in the next state equals the current value
incremented by one. The value of z in the database component is specified as
an invariant. This can be expressed as z = z.value — y.value. At the system
level, we have to specify the coordination between the warning and database
components. Most importantly, we have to specify that a raise-event should
occur in a dangerous situation: O(becomes(db.z > 10) = O(warn.raise)),
where ¢ is read as eventually, and becomes(p) means that p becomes true in
the current state transition.

2.1 Towards a Formalisation

Composition of State Variables and Events. States and events can be modelled
in a dual way. Because a component may inspect its own variables and the
variables in its subcomponents, the state of each component is modelled as
the Cartesian product of its own variables and the states of its subcomponents
(see Figure 2). On the other hand, if an event occurs, it either is an event of
the component itself, or in one of its subcomponents. Therefore, the set of
events of each component can be modelled as the disjoint union of its own
events, and the events of its subcomponents (see Figure 3). Disjointness is
needed to distinguish e.g. the increment events of the two counters.

In the example, the database can use z.value. The same state variable is
accessed by the system as db.x.value. Here x and db can be seen as projec-
tions that come for free with the Cartesian product. The system can observe
warn.raise and db.y.increment as events. Note that for events, warn, db and
y can be seen as injections, that come for free with the disjoint union.
Technical Problem Statement. The difficult step is to interpret the require-
ments of a component in the composed system. In Figure 4 this situation is
illustrated. The solid boxes and arrows represent the state and events of a
component. They exist in the context of a larger state (the dashed part) and
events of other components may occur (the dashed arrows). The requirements
are in terms of the solid boxes and arrows. We have to translate them to runs
over the dashed boxes and arrows. For a large part, this is a contextual nam-
ing problem: db.z.value w.r.t. the system, actually is the same as z.value
w.r.t. the database. But note that the local runs are also interleaved with
events from other components. We found a solution that can quite elegantly
be implemented in PVS.

Sketch of the solution. The solution is to define a state mapping from the
global states to the local states, and an event mapping from the local events
to the global events. The state mapping is a composition of the right pro-
jections, e.g. y o db. Dually, the event mapping is a composition of the right

system
active?: bool warn
db
x|]
z:nat
value: nat value: nat

Fig. 2. The state as hierarchical Cartesian product

raise
withdraw
close

Fig. 4. Component specification in a larger context

injections, e.g. dbox. Note that multiple instances of the same component can
be distinguished, because they have different state and event mappings.

Using these maps, we can interpret local requirements on runs over the
global states and events! Because the requirements of all components can now
be interpreted in the same global system, the requirements on the system
are simply the conjunction of the requirements on all components. It remains
of course to be verified that the requirements of several components are not
contradictory.

3 A Framework for Requirements Specification

In our approach, a requirements specification in PVS consists of two parts. The
first part, presented in this section, defines temporal logic formulae, and their
modular interpretation via the above mentioned mappings. These theories are
generic in the sense that they can be used in each system specification without
change. The second part consists of the system specific requirements. For the
running example this part is presented in Section 4.

3.1 Preliminary: the Theorem Prover PVS

PVS (Prototype Verification System [12,13]) is a specification language and a
proof checker, based on typed higher-order classical logic, in which our math-
ematical framework can be easily expressed. A specification can be parsed

and type checked in PVS, possibly resulting in type check conditions. Besides
these type check conditions, other theorems can be proved using the proof
checker. When proving a theorem, PVS administrates the subgoals still to be
proved. In principle, the user decides which proof rule should be applied next.
PVS also provides many decision procedures for proving certain theorems
automatically.

The specification language of PVS. A PVS-specification consists of a collection
of theories, each containing a number of type and function definitions, and
theorems. A theory may depend on a number of (formal) parameters for types
and terms. A theory can be imported by other theories, which makes its
definitions available. A number of theories are predefined, together called the
prelude. This prelude contains among others basic types, e.g. natural numbers
(nat), real numbers (real) and booleans (bool), with their usual operators.
The boolean operators are written &, =>, OR, NOT (conjunction, implication,
disjunction and negation).

We introduce some of the basic notations of PVS. For a full explanation we
refer to [13]. Function types are written as in [nat,real->bool], which de-
notes the collection of relations between natural and real numbers. Functions
can be written in lambda notation, as in LAMBDA (m:nat,z:real) : z*z=m,
which has the type just mentioned. Quantifiers can be used, as in e.g. FORALL
(m:nat): EXISTS (z:real): z*xz=m.

Record types denote Cartesian products, where the different fields are
named. An example is: [# x:nat,y:nat #]. Terms of this type are written
like p = (# x:=3, y:=5 #). A record overwrite construction can be used to
“change” the value of one of the fields. We could define: q = p WITH [y :=
7]. The fields can be accessed by the names; we have x(q)=3 and y(q)=7.

We will also use abstract datatypes and subtypes. Typical examples of
abstract datatypes are lists and enumerated types. The syntax will be in-
troduced later. An example of a subtype is {z:real | EXISTS (m:nat)
z+z=m}, which denotes the collection of square roots of natural numbers.

Lifting the booleans. As an example we give a theory to lift the usual boolean
operators to predicates over arbitrary domains, which we will use several
times later on (Figure 5). It is comparable to the file connectives.pvsin the
standard PVS library.

The theory bool2pred is parameterised by a type, called Domain. The
body of the theory is delimited by BEGIN and END. The body starts with
variable declarations. Then some function definitions follow, extending the
boolean operators pointwise to predicates. Note that overloading is allowed.
The variable declarations are used to infer the type of the defined func-
tions. For instance, NOT will get type [[Domain->bool]->[Domain->bool]].
The theory can be used for instance to lift the boolean operators to op-
erators on binary predicates over natural numbers, by typing: IMPORTING
bool2pred[[nat,nat]].

bool2pred[Domain:TYPE] : THEORY
BEGIN

X: VAR Domain

p,q: VAR [Domain->bool]

NOT (p) (X) :bool = NOT p(X) ;
&(p,q) (X):bool = p(X) & q(X) ;
OR(p,q) (X) :bool = p(X) OR q(X) ;
=>(p,q) (X):bool = p(X) => q(X)

END bool2pred

Fig. 5. Lifting boolean connectors to predicates

3.2 Linear Temporal Logic on Runs

Figure 6 contains a theory on linear temporal logic (cf. [10]) in PVS. The
type of states and events are parameters of this theory. A run is formalised as
an infinite sequence of records of states and events. A temporal formula is a
predicate on runs. After some obvious variable declarations, we define three
groups of temporal logic formulae.

Atomic formulae: We have three atomic formulae, expressing the fact that
a predicate on states, on events, or on state transitions holds at the start of
the run. A predicate on state transitions is a binary relation on successive
states (called an action in TLA [8]):

.- Oceurs(ep)
@ €0 @ el @ e _ .

N—

Hol ds(sp) R Transition(tp)

Boolean operators: These are lifted to temporal logic by importing theory
bool2pred of Figure 5 instantiated on runs.

Modal operators: Modal operators can be defined analogously to their usual
semantic definition. ALWAYS (p) holds of a run, if p holds for all suffixes of the
run (suffix is defined in the prelude). EVENTUALLY is defined as the dual of
ALWAYS. BEFORE(p,q) is to be read as: p happens before q (or: p must precede
q). NEXT(p) holds if p holds at the next moment (i.e. for the suffix obtained
by deleting the first element of the run).

3.3 The Modularisation of Temporal Logic

This section explains how we can modularise temporal logic. As explained
already in Section 2.1, we distinguish the local states and local events of a
component, and the global states and global events of the complete system.

temporal_logic[State,Event: TYPE]:THEORY

BEGIN
run: TYPE = [nat->[#state:State,event:Event#]]
TL: TYPE = [run->booll

p-q: VAR TL ; R: VAR run ; 1i,j,k: VAR nat

sp: VAR [State->booll % a state predicate

ep: VAR [Event->bool] % an event predicate

tp: VAR [State,State->bool]l 7 a transition predicate

Holds(sp) (R) :bool = sp(state(R(0)))
Occurs (ep) (R) :bool = ep(event(R(0)))
Transition(tp) (R) :bool = tp(state(R(0)),state(R(1)))

IMPORTING bool2pred[run]

ALWAYS(p) (R) :bool = FORALL j: p(suffix(R,j))
EVENTUALLY (p) : TL = NOT ALWAYS(NOT p)
BEFORE (p,q) (R) :bool
= FORALL j: q(suffix(R,j)) => EXISTS k : k<j & p(suffix(R,k))
NEXT(p) (R) :bool = p(suffix(R,1))
END temporal_logic

Fig. 6. Definition of linear temporal logic in PVS

modular [Glo_state,Loc_state: TYPE, smap:[Glo_state->Loc_state],
Glo_event,Loc_event: TYPE, emap:[Loc_event->Glo_event]]

: THEORY

BEGIN

IMPORTING temporal_logic[Glo_state,Glo_event]
gsl,gs2: VAR Glo_state ; ge: VAR Glo_event ; 1le: VAR Loc_event
1sp: VAR [Loc_state->bool] % a local state predicate
lep: VAR [Loc_event->bool] % a local event predicate

1tp: VAR [Loc_state,Loc_state->bool] % a local transition predicate

HOLDS (1sp) : TL = Holds(1lsp o smap)
TRANSITION(1tp) : TL
= Transition(LAMBDA (gsl,gs2): 1ltp(smap(gsl),smap(gs2)))
OCCURS (1lep) : TL
= Occurs(LAMBDA ge: EXISTS le: ge = emap(le) & lep(le))
END modular

Fig. 7. Modularisation of Temporal logic

We assume a state mapping from the global states of the system to the local
states of the component; and an event mapping from local events to global
events.

In Figure 7 we present a PVS theory that gives temporal logic a modular
interpretation. The global and local states and events, and the state and event
mappings are parameters of this theory. All formulae are to be interpreted in
the world of global states and events, so we import temporal_logic (Figure 6)
with parameters Glo_State and Glo_Event.

The theory defines local versions of the atomic formulae, expressing that
local state predicates, local event predicates, or local transition predicates are
true. The predicates in the local domain are mapped to global predicates, us-
ing the state and event mappings. The rationale is that the actual specification
can use predicates on the locally known states and events.

For states this is quite easy: the local state predicate (1sp) can be com-
posed with the state map (smap), yielding a global state predicate. For state
transitions the situation is similar. For events the situation is different, be-
cause the event mapping is going in the other direction. A local event predicate
(lep) occurs, if one of its elements corresponds via the event map (emap) to
the global event that currently occurs.

3.4 Patterns in Requirements Specifications

The atomic formulae HOLDS, TRANSITION and OCCURS, together with the tem-
poral operators ALWAYS, BEFORE, NEXT and the boolean connectives suffice
to express many requirements. However, it appears that certain patterns re-
occur very often. Abbreviations of such patterns are defined below. These
abbreviations enable the engineer to express the requirements in a readable
way.

Given a state predicate 1sp, we say that it BECOMES true, if it becomes
true in the current transition. State predicate 1sp is a PRECONDITION of local
event predicate lep, if 1lep only occurs in situations where 1sp is true. The
event predicate lep has the EFFECT described by the transition predicate 1tp,
if whenever an event that satisfies lep occurs, 1tp holds. This yields the
following definitions in PVS:

BECOMES (1sp) : TL
PRECONDITION (lep,1lsp):TL
EFFECT (lep,1tp) : TL

NEXT (HOLDS(1sp)) & NOT HOLDS(1lsp)
ALWAYS (OCCURS(lep) => HOLDS(1lsp))
ALWAYS (OCCURS(lep) => TRANSITION(1ltp))

Finally, we introduce some handy notation. In order to allow formulae like
OCCURS(x? OR y?) and HOLDS(pressed? => active?), we lift the boolean
operators to operators on local state and event predicates, just by importing
from Figure 5, bool2pred[Loc_state] and bool2pred[Loc_event].

We also define an automatic conversion from events to event predicates.
The advantage is that we can now write e.g. 0CCURS(raise), instead of the
elaborate OCCURS (LAMBDA le:le=raise). In PVS the conversion is defined
as follows:

lel, le2: VAR Loc_event
event2pred(lel) (1e2) :bool = lel=le2
CONVERSION event2pred

In order to specify that the subcomponent c of the state doesn’t change, we
introduce the abbreviation constant(c) for the transition predicate LAMBDA
s1,s2: c(s1)=c(s2). In order to specify that e.g. the toggle event may not
change the database-contents, we now write: EFFECT (raise,constant (db)).
Note that the conversion event2pred also has to be applied.

4 Formal Specification of the Running Example

We now show how to express the requirements of the running example (Sec-
tion 2) in PVS, using the framework developed in Section 3. Each component
gives rise to three PVS theories: One to capture the data view, one to capture
the view on behaviour, and an auxiliary one defining the set of events. The
data view yields a type denoting the set of states that satisfy the invariants.
The view on behaviour yields the requirements on runs, as a temporal logic
formula.

4.1 States and events.

Figure 8 shows the state specification of the counter and database components
in PVS. The states of the other components are defined analogously. See also
Figures 1 and 2. The state of a component is based on a record, with fields
for the state variables of the component (value, z), and for the states of
its subcomponents (x, y). The invariants are modelled as predicates on this
record. The type checker deals with database_inv as follows: naturals are
a subtype of integers, and subtraction is closed under the integers, so the
equality is on integers. Note that the invariant implies that value(x(d)) >=

counter_state: THEORY
BEGIN

counter_state: TYPE = [# value: nat #]
END counter_state

database_state: THEORY
BEGIN
IMPORTING counter_state
state_vars: TYPE = [# x,y: counter_state, z : nat #]
database_inv(d:state_vars) :bool =
(z(d) = value(x(d)) - value(y(d)))
database_state: TYPE = { d: state_vars | database_inv(d) }
END database_state

Fig. 8. Data view on counter and database in PVS

value(y(d)). The state is defined as the subtype consisting of those records
that satisfy the invariant. The advantage is that states not satisfying the
invariant are exposed by the type checker.

Also, for each component we need a type for the events. The disjoint union
can be formalised in PVS by the DATATYPE construct. Figure 9 shows the event
definition of the database and system components. The constructors of this
datatype are the local events of the component (toggle), and the injections of
the events of subcomponents (db, x). Note that we use overloading: depending
on the context, x can denote the accessor in the states of the database, or the
constructor in the events of the database. System events are for instance
toggle, warn(raise) and db(y(increment)). Recognisers are also defined,
such as db? of type [system event->bool]. Destructors ev can also be used in
the specification. The events of the other components are specified analogously
(see Figures 1 and 3).

database_event: DATATYPE

BEGIN

IMPORTING counter_event
x(ev:counter_event) :x?
y(ev:counter_event) :y?

END database_event

system_event: DATATYPE

BEGIN

IMPORTING database_event, warning_event
toggle: toggle?
db(ev:database_event): db?
warn(ev:warning_event): warn?

END system_event

Fig. 9. Event specification of system in PVS

4.2 Requirements on Behaviour.

We now formalise the requirements on the behaviour of the various compo-
nents in detail. For the counter and database, we give complete specifications,
to illustrate how the theories relate. For the other components we just give
the temporal requirements, without showing the surrounding theory.

Counter component. Recall that we distinguish the global states and events
of the combined system, from the local states and events of a component. For
the specification of a component, the global states and events are unknown.
Therefore, we put them as parameters to the theory on behaviour. Also, the
state and event mappings are given as a parameter to this theory. Figure 10
presents the theory counter_behaviour. In order to list the parameters we
just mentioned, the state and event definitions for the counter have to be

counter_behaviour
[(IMPORTING counter_state, counter_event)
State: TYPE, smap:[State->counter_state],
Event: TYPE, emap:[counter_event->Event]
1: THEORY
BEGIN
IMPORTING modular[State,counter_state,smap,Event,counter_event,emap]

increment_transition(cl,c2:counter_state):bool =
(value(c2) = value(cl) + 1)
requirements:TL = EFFECT (increment ,increment_transition)
END counter_behaviour

Fig. 10. View on the behaviour of the counter

imported. As we want to use modular temporal logic, that theory is imported
with the obvious actual parameters.

We can now specify the requirements in temporal logic. The only require-
ment on the counters is that the event increment shall have the EFFECT
described by the transition predicate increment transition. In PVS this is
formalised straightforwardly.

Database component. The database component has no requirements on its
own behaviour. So its requirements are merely the conjunction of the re-
quirements of its subcomponents. In addition we must specify that there is no
interference between the subcomponents, i.e. the occurrence of an event in one
subcomponent doesn’t change the state of any of the other subcomponents.
These requirements can be found at the bottom of Figure 11.

In order to conjoin the requirements of the two subcomponents, we have
to import the views on their behaviour, both defined in the same theory. They
can be distinguished, because they are imported with different actual param-
eters. In order to distinguish them later on, we give the two imported theories
a name, by the ..:THEORY = .. mechanism of PVS, which also imports the
theories.

Consider the subcomponent x of the database. In order to refer to the state
of the database from the global state, we have to use smap. The projection
(record accessor) x then yields the state of counter x within the database, so
the complete state mapping is x o smap. Similarly, an event of counter x is
referred to by the database component, using the injection (constructor) x,
and then mapping the result to a global event by emap. So the complete event
map is emap o x.

Note that the specification is independent of the actual state variables,
events or requirements of the counters. It is also independent of the actual
location of the database component in the system. This is required for a
modular specification approach.

database_behaviour
[(IMPORTING database_state, database_event)
State: TYPE, smap:[State->database_state],
Event: TYPE, emap:[database_event->Event]
1: THEORY
BEGIN
IMPORTING modular[State,database_state,smap,Event,database_event,emap]
x: THEORY = counter_behaviour[State,x o smap, Event, emap o x]
y: THEORY = counter_behaviour[State,y o smap, Event, emap o yl
requirements:TL =
X.requirements
& y.requirements
& EFFECT(x?7,constant(y))
& EFFECT(y?,constant(x))
END database_behaviour

Fig. 11. View on the behaviour of the database

Warning component. In Section 2, we stated that two raise events shall be
interleaved with a close or withdraw event. Similarly, two close or withdraw
events shall be interleaved by a raise event. Finally, the initial step shall be
a raise event. This can be specified in PVS as follows:

requirements: TL =

ALWAYS (OCCURS (raise) =>

NEXT (BEFORE (OCCURS (withdraw) OR OCCURS(close), OCCURS(raise))))
& ALWAYS(OCCURS (withdraw) OR OCCURS(close) =>

NEXT (BEFORE (OCCURS (raise), OCCURS(withdraw) OR OCCURS(close))))
& BEFORE (OCCURS (raise) ,0CCURS (withdraw) OR OCCURS(close))

System component. Finally, the requirements on the system component define
the requirements on the global system’s behaviour. First, we define a transition
to toggle the activation of the system, and we define what is regarded as a
dangerous situation:

toggle_transition(sl,s2:system_state):bool =
(s2 = s1 WITH [active? := NOT active?(s1)])
danger?(s:system_state) :bool = z(db(s))>10

The requirements are specified in Figure 12. First, the effect of a toggle event
and the initial value of active? is defined. Then the coordination between
the warning component and the database is specified. A warning shall be
raised only if active? holds, and it shall only be withdrawn when there is no
danger?. This only forbids that warnings are raised or withdrawn at certain
moments. In the next requirement, we state that whenever the situation be-
comes dangerous, a warning shall be raised eventually. Finally, we incorporate
the standard requirements, viz. the requirements of the subcomponents shall
hold, and the behaviour of subcomponents shall not interfere.

requirements:TL =
EFFECT (toggle,toggle_transition)
& HOLDS(NOT active?)

& PRECONDITION(warn(raise),active?)
PRECONDITION (warn (withdraw) ,NOT danger?)
ALWAYS (BECOMES (danger?) => EVENTUALLY (OCCURS (warn(raise))))

5

db.requirements
warn.requirements

EFFECT (warn?,constant (db))
EFFECT (warn?,constant (active?))
EFFECT (db?,constant (active?))

Frrreee

Fig. 12. Behaviour specification of the system

5 Analysis of the Specification

The reader may have found certain problems in the formal specification of
Section 4. It is the goal of the analysis to find such problems. Formal analysis
consists of proving theorems on the specification. These proofs are carried out
in PVS. Because the specification only contains definitions, and no axioms,
this reasoning is sound even in the case that the specification would be incon-
sistent. We will discuss two different checks in the sequel. We also discuss the
degree of automation in the proofs of the theorems in PVS.

5.1 Compatibility of State Transitions and Invariants

The first check is taken from [14]. The specification contains invariants, and
also a number of state transitions. The intended meaning is that the design
should meet the requirements on the state transitions as well as the invariants.
In particular, if the counter values are incremented, z must be recomputed
due to the integrity constraint z = z.value — y.value. The conjectures in
PVS below check whether this is possible. They are derived from occurrences
of EFFECT in the specification. Recall that states are subtypes, containing
information on the invariants.

ds1,ds2: VAR database_state ; ssl,ss2: VAR system_state

CONJECTURE FORALL ds1: EXISTS ds2: increment_transition(x(dsi1),x(ds2))
CONJECTURE FORALL dsl: EXISTS ds2: increment_transition(y(dsl),y(ds2))
CONJECTURE FORALL ss1: EXISTS ss2: toggle_transition(ssl,ss2)

The first and third can be proved straightforwardly. The second proof fails.
For z(ds2) we can only choose z(ds1)-1. The type checker then comes with
the following subgoal (the assumptions are above the horizontal line, the proof
obligations are below it):

{1} z(dsl) - 1 >=0

We found a problem in the original specification! If z(ds1) = 0 and the value of
y is incremented, then keeping the invariant z = x.value—y.value would make
z negative, which is forbidden because z is a natural number. The specification
can be repaired, in several ways. Consulting domain experts might reveal that
actually the distance between x and y is important, so that the corrected
invariant reads z = abs(z.value — y.value).

5.2 Scenarios satisfying the requirements

Is is also possible to validate the specification against a number of desirable
and undesired scenarios. Given a scenario, it can be formally proved whether
the specification correctly admits or refutes it. Note that if some scenario
satisfies all requirements, this is a proof that the various requirements are
consistent, in the sense that falsum is not derivable from their conjunction.
Other contradictions in the specification can be found in this way too (see
scenario R2 below). However, as this validation depends on the scenarios con-
sidered, it is always incomplete.

To start this verification, we first “close” the system, in the sense that
we identify the global states and events with the states and events of the
system specified in the previous section. The state and event mappings are
instantiated with the identity function. Note that also subcomponents can be
analysed in isolation by closing them.

IMPORTING system_state, system_event
IMPORTING system_behaviour[system_state,id,system_event,id]

Next we define the function make_world which, given boolean b and natural
numbers ¢ and j and a system event e, yields a state-event-record for the
system, in which active? is set to b, the values of x and y are set to 7 and
j, respectively, z is set to ¢ — 7 and the event is e. We constrain j such that
J<i.
ws: warning_state
make_world(b,i, (jli>=j),e): [#state:system_state,event:system_event#] =
(# state := (# active? := Db,

db := (# x:= (# value := i #), y:= (# value := j #), z:= i-j #),
warn := ws #),

event := e #)

Using this function, we can define the infinite run R1. It starts with z
having the critical value 10. Then the events toggle, x.increment and raise
happen, followed by an infinite number of toggle-events. (add is a predefined
function on sequences.)

Rl: run = add(make_world(FALSE,10,0,toggle),
add (make_world (TRUE,10,0,db(x(increment))),

add (make_world(TRUE,11,0,warn(raise)),
LAMBDA i: make_world(even?(i),11,0,toggle))))
CONJECTURE system_behaviour.requirements(R1)

The conjecture is that this run satisfies all requirements for the system, defined
in theory system_behaviour. The theorem is proved in PVS straightforwardly
(see Section 5.3). This shows that this scenario is allowed by the specification.
Hence the various requirements are not contradictory.

In the next scenario, counter x is repeatedly incremented, so on the i-th
position in the run its value is i. The warning component is switched off by
setting active? to false, so it is not necessary to raise warnings.

R2:run = LAMBDA i: make_world(FALSE,i,0,db(x(increment)))
CONJECTURE system_behaviour.requirements(R2)

Somewhat surprisingly, this conjecture proved to be false. Directed by the re-
sulting unprovable subgoal, the specification was inspected, revealing another
mistake. After 10 increments, danger? becomes true, and a warning must be
raised eventually; this however should not occur, because the warning com-
ponent is off. This error can be repaired in several ways. The most natural is
to weaken one of the requirements to

ALWAYS (BECOMES (danger?) & active? => EVENTUALLY (DCCURS(warn(raise))))

After some experiments, we found the following R3, which is a “bad”
scenario. Its event trace is toggle.raise.toggle”. This is not an intended run
of the system, because a warning is raised without reason.

R3:run = add(make_world(FALSE,0,0,toggle),

add (make_world (TRUE,0,0,warn(raise)),

LAMBDA i: make_world(even?(i),0,0,toggle)))
CONJECTURE system_behaviour.requirements (R3)

R3 was shown by PVS to satisfy all requirements. This indicates that the
specification is not complete. Warnings should be raised if and only if active?
is on, and the situation is dangerous. We forgot to specify the “only if” part.

5.3 Degree of Automation

The theorems are proved semi-automatically in PVS. The GRIND-command
performs unfolding of the definitions, basic arithmetic and skolemisation of
quantifiers. This does the bulk of the work, eliminating all references to tem-
poral logic, and checking basic arithmetic facts. This automation not only
saves a lot of work, but it also makes the proofs more robust. After small
changes in the specification, most proofs can simply be rerun.

Three kinds of subgoals had to be discharged by hand. Theorems about
odd and even numbers (for instance, the successor of an odd number is even).
Such theorems should typically be included in the standard library. Secondly,
the system didn’t always automatically infer inequalities, like warn(raise)#
warn(close). This seems to be an omission in the decision strategy of PVS.

Finally, proving EVENTUALLY (p) or BEFORE (p,q) boils down to finding a point
in the run where p is true. The system cannot instantiate this existential
quantifier automatically. This is unavoidable, because the logic is undecidable,
due to its expressivity.

6 Conclusion

Results. In this paper, we have described a modular approach to the formal
specification of the requirements on embedded systems. In this approach a
specification consists of two views, defining the data and the behaviour of a
system. Our approach allows abstract specifications, because the requirements
are stated in an assertional way. The requirements on data are specified by
invariants on states of the system. Behaviour is specified by temporal logic
formulae on runs of the system.

The proposed method is modular, because components can be specified
and analysed in isolation, and the views of several components can be com-
bined in an easy way. Combining states corresponds to taking the Cartesian
product. Events can be combined by taking disjoint union. The requirements
on behaviour can be combined by simply taking the conjunction.

A mathematical framework supporting this approach has been developed.
We have implemented this framework in the specification language and the-
orem prover of PVS. This gives rise to a non-trivial application of PVS. The
implementation hinges on the particular feature of PVS, that theories can
be parameterised by types and terms. Each component in the specification
leads to a number of theories, parameterised by certain mappings between
the components. The generic part of the implementation can be reused for
other specifications without change. The method was illustrated by formal-
ising the requirements of a miniature embedded system. This specification
could then be analysed, revealing some errors in the specification. The anal-
ysis concentrated on compatibility of invariants and state transitions and on
validating and rejecting scenarios.

Related Work. We briefly summarise some existing specification formalisms.
The scheme calculus of Z [17], makes specifications modular with respect to
the data view. Z specifications incorporate state invariants and transitions but
no events. From a 7 specification the interaction with the environment cannot
be unambiguously inferred (this is also true of VDM [6]). This observation is
not new: in Object-Z [15] an order on actions can be specified with temporal
logic formulae; see also [7], where deontic logic is used to describe when certain
actions are permitted or obliged.

Process algebras, on the other extreme, are completely control-oriented.
The state is only implicitly present, as a kind of “program counter”. For-
malisms like 4CRL [4], and I/O-automata [9] have also a data description,
but they remain control-oriented; only the visible actions of processes count.
Moreover, specifications in these formalisms tend to be too operational for
requirements engineering. Finally, formalisms based on temporal logic [10, 1],

and TLA [8], have a notion of state and state transitions, and behaviour can
be specified by temporal assertions, but these formalisms lack a principle of
hierarchically structured states, so they are not modular with respect to the
data view.

In graphical languages, like UML [3] and STATEMATE [5], the emphasis is
on expressibility and scalability, rather than on the underlying mathematical
framework.

Comparing our approach with object-oriented analysis [2], we see some
similarities and differences. As in object orientation, we can specify compo-
nents in isolation, and also have aggregates of components. These aggregates
can form a hierarchy. Also multiple occurrences of the same component are
allowed. However, our approach doesn’t include object creation. We also de-
liberately don’t have a mechanism of message passing or encapsulation of data
or internal events. We think that these mechanisms easily lead to implemen-
tation biased specifications, and are not helpful for requirements engineering.

Our scenario-based analysis resembles model checking. However, a model
checking tool cannot be effectively deployed, as long as there is no (finite)
operational description of the system. Model checking could be useful during
the design of the system, where operational descriptions emerge.

Future work. We have chosen a very simple model, viz. sets of runs. Exten-
sions with real-time will be considered, and also ready/failure trace semantics,
in order to express that certain input events should be enabled (cf. [11]). The
analysis can then be extended by proving other interesting properties of a
specification, for instance robustness, meaning that the specified system ac-
cepts all possible input.

Research on the smooth integration of requirements specification and de-
sign is needed. In design, data and behaviour of components are refined, and
structural components are combined by taking parallel composition. To allow
refinement and composition, the model has to be extended, with for instance
stuttering steps [8], communication primitives and encapsulation. The work
on compositionality, e.g. [1] may provide useful insights.

Finally, this paper is not concerned with the design of a concrete spec-
ification language, which is convenient and readable for engineers. Such a
language might include restricted versions of class diagrams, finite automata,
tabular representations or process expressions. A user interface might hide the
administration of parameters, mappings and importings, which can be gen-
erated automatically from Figure 1. Partial specifications must be mapped
systematically into the common underlying mathematical framework, in or-
der to obtain a sound multi-paradigm specification method (cf. [18]).

Acknowledgements. We like to thank Roel Bloo and Dieter Hammer from
the Eindhoven University of Technology for critical comments on previous
versions of this paper. We are also grateful to Martin Streng from Hollandse
Signaalapparaten B.V. for discussions on the applicability of our method. The
referees suggested valuable improvements to the paper.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

H. Barringer, R. Kuiper, and A. Pnueli. Now you may compose temporal logic
specifications. In ACM Symposium on Theory of Computing (STOC ’84), pages
51-63. ACM Press, 1984.

G. Booch. Object Oriented Analysis and Design with Applications. The Ben-
jamin Cummings Publishing Co. Inc., 1991.

M. Fowler and K. Scott. UML Distilled: Applying the Standard Modeling Object
Language. Object Technology Series. Addison-Wesley, 1997.

J.F. Groote and A. Ponse. The syntax and semantics of p#CRL. In A. Ponse,
C. Verhoef, and S.F.M. van Vlijmen, editors, Algebra of Communicating Pro-
cesses, Utrecht 1994, Workshops in Computing, pages 26—62. Springer, 1994.
D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, and
A. Shtul-Trauring. STATEMATE; a working environment for the development
of complex reactive systems. In Proc. of the 10th Int. Conf. on Software Engi-
neering, pages 396-406, Singapore, 1988. IEEE Computer Society Press.

C.B. Jones. Systematic Software Development using VDM. International Series
in Computer Science. Prentice-Hall, Inc., 2nd edition, 1990.

S. Khosla and T.S.E. Maibaum. The prescription and description of state based
systems. In B. Baniegbal, H. Barringer, and A. Pnueli, editors, Temporal Logic
in Specification, volume 398 of LNCS, pages 243—-294. Springer, 1987.

L. Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872-923, 1994.

N.A. Lynch. I/O automata: A model for discrete event systems. In Proc. of
22nd Conf. on Inf. Sciences and Systems, pages 29-38, Princeton, NJ, USA,
1988.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems — Specification. Springer, 1992.

E.R. Olderog and C.A.R. Hoare. Specification-oriented semantics for commu-
nicating processes. Acta Informatica, 23(1):9-66, 1986.

S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Com-
bining specification, proof checking, and model checking. In R. Alur and T.A.
Henzinger, editors, Proc. of the 8th Int. Conf. on Computer Aided Verification,
volume 1102 of LNCS, pages 411-414. Springer, 1996.

S. Owre, N. Shankar, J.M. Rushby, and D.W.J. Stringer-Calvert. PVS Language
Reference. Computer Science Laboratory, SRI International, Menlo Park, CA,
September 1998.

J.C. van de Pol, J.J.M. Hooman, and E. de Jong. Formal requirements specifi-
cation for command and control systems. In Proc. of the Conf. on Engineering
of Computer Based Systems, pages 37—44, Jerusalem, 1998. IEEE.

G. Rose. Object-Z. In S. Stepney, R. Barden, and D. Cooper, editors, Object
Orientation in Z, Workshops in Computing, pages 59-77. Springer, 1992.

J. Rushby. Formal methods and the certification of critical systems. Technical
Report SRI-CSL-93-7, SRI International, Menlo Park, CA, 1993.

J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2nd edition,
1992.

P. Zave and M. Jackson. Where do operations come from? A multiparadigm
specification technique. IEEE Trans. on SE, 22(7):508-528, 1996.

